2,480 research outputs found

    Adaptive, spatially-varying aberration correction for real-time holographic projectors.

    Get PDF
    A method of generating an aberration- and distortion-free wide-angle holographically projected image in real time is presented. The target projector is first calibrated using an automated adaptive-optical mechanism. The calibration parameters are then fed into the hologram generation program, which applies a novel piece-wise aberration correction algorithm. The method is found to offer hologram generation times up to three orders of magnitude faster than the standard method. A projection of an aberration- and distortion-free image with a field of view of 90x45 degrees is demonstrated. The implementation on a mid-range GPU achieves high resolution at a frame rate up to 12fps. The presented methods are automated and can be performed on any holographic projector.Engineering and Physical Sciences Research CouncilThis is the final version of the article. It first appeared from the Optical Society of America via https://doi.org/10.1364/OE.24.01574

    An optical Fourier transform coprocessor with direct phase determination.

    Get PDF
    The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics

    Single-pixel phase-corrected fiber bundle endomicroscopy with lensless focussing capability.

    Get PDF
    In this paper a novel single-pixel method for coherent imaging through an endoscopic fiber bundle is presented. The use of a single-pixel detector allows greater sensitivity over a wider range of wavelengths, which could have significant applications in endoscopic fluorescence microscopy. First, the principle of lensless focussing at the distal end of a coherent fiber bundle is simulated to examine the impact of pixelation at microscopic scales. Next, an experimental optical correlator system using spatial light modulators (SLMs) is presented. A simple contrast imaging method of characterizing and compensating phase aberrations introduced by fiber bundles is described. Experimental results are then presented showing that our phase compensation method enables characterization of the optical phase profile of individual fiberlets. After applying this correction, early results demonstrating the ability of the system to electronically adjust the focal plane at the distal end of the fiber bundle are presented. The structural similarity index (SSIM) between the simulated image and the experimental focus-adjusted image increases noticeably when the phase correction is applied and the retrieved image is visually recognizable. Strategies to improve image quality are discussed.G. Gordon would like to acknowledge support from a Henslow Research Fellowship from the Cambridge Philosophical Society, as well as research funding from the Cambridge Cancer Centre and Cancer Research UK. S. Bohndiek would like to acknowledge research funding from a Cancer Research UK Career Establishment Award and the CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester.This is the final version of the article. It first appeared from IEEE via http://dx.doi.org/10.1109/JLT.2015.243681

    RNA-seq transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis

    Get PDF
    Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including gene expression microarrays and RNA-sequencing (RNA-seq), has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analyzed the peripheral blood leukocyte (PBL) transcriptome of eight natural M. bovis-infected and eight age- and sex-matched non-infected control Holstein-Friesian animals using RNA-seq. In addition, we compared gene expression profiles generated using RNA-seq with those previously generated using the high-density Affymetrix(®) GeneChip(®) Bovine Genome Array platform from the same PBL-extracted RNA. A total of 3,250 differentially expressed (DE) annotated genes were detected in the M. bovis-infected samples relative to the controls (adjusted P-value ≤0.05), with the number of genes displaying decreased relative expression (1,671) exceeding those with increased relative expression (1,579). Ingenuity(®) Systems Pathway Analysis (IPA) of all DE genes revealed enrichment for genes with immune function. Notably, transcriptional suppression was observed among several of the top-ranking canonical pathways including Leukocyte Extravasation Signaling. Comparative platform analysis demonstrated that RNA-seq detected a larger number of annotated DE genes (3,250) relative to the microarray (1,398), of which 917 genes were common to both technologies and displayed the same direction of expression. Finally, we show that RNA-seq had an increased dynamic range compared to the microarray for estimating differential gene expression

    Fish in habitats with higher motorboat disturbance show reduced sensitivity to motorboat noise

    Get PDF
    This is the author accepted manuscript. The final version is available from the Royal Society via the DOI in this recordAnthropogenic noise can negatively impact many taxa worldwide. It is possible that in noisy, high disturbance environments the range and severity of impacts could diminish over time, but the influence of previous disturbance remains untested in natural conditions. This study demonstrates effects of motorboat noise on the physiology of an endemic cichlid fish in Lake Malaŵi. Exposure to motorboats (driven 20–100 m from fish) and loudspeaker-playback of motorboat noise both elevated oxygen-consumption rate at a single lower-disturbance site, characterised by low historic and current motorboat activity. Repeating this assay at further lower-disturbance sites revealed a consistent effect of elevated oxygen consumption in response to motorboat disturbance. However, when similar trials were repeated at four higher-disturbance sites, no effect of motorboat exposure was detected. These results demonstrate that disturbance history can affect local population responses to noise. Action regarding noise pollution should consider the past, as well as the present, when planning for the future.NERC–Marine Scotland Science CASE GW4+ Studentship (H.R.H.; NE/L002434/1); NERC Grant (S.D.S & A.N.R; NE/P001572/1)

    Whole-transcriptome, high-throughput RNA sequence analysis of the bovine macrophage response to Mycobacterium bovis infection in vitro

    Get PDF
    BACKGROUND: Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular pathogen that can persist inside host macrophages during infection via a diverse range of mechanisms that subvert the host immune response. In the current study, we have analysed and compared the transcriptomes of M. bovis-infected monocyte-derived macrophages (MDM) purified from six Holstein-Friesian females with the transcriptomes of non-infected control MDM from the same animals over a 24 h period using strand-specific RNA sequencing (RNA-seq). In addition, we compare gene expression profiles generated using RNA-seq with those previously generated by us using the high-density Affymetrix® GeneChip® Bovine Genome Array platform from the same MDM-extracted RNA. RESULTS: A mean of 7.2 million reads from each MDM sample mapped uniquely and unambiguously to single Bos taurus reference genome locations. Analysis of these mapped reads showed 2,584 genes (1,392 upregulated; 1,192 downregulated) and 757 putative natural antisense transcripts (558 upregulated; 119 downregulated) that were differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). Of the differentially expressed genes, 694 were common to both the sense and antisense data sets, with the direction of expression (i.e. up- or downregulation) positively correlated for 693 genes and negatively correlated for the remaining gene. Gene ontology analysis of the differentially expressed genes revealed an enrichment of immune, apoptotic and cell signalling genes. Notably, the number of differentially expressed genes identified from RNA-seq sense strand analysis was greater than the number of differentially expressed genes detected from microarray analysis (2,584 genes versus 2,015 genes). Furthermore, our data reveal a greater dynamic range in the detection and quantification of gene transcripts for RNA-seq compared to microarray technology. CONCLUSIONS: This study highlights the value of RNA-seq in identifying novel immunomodulatory mechanisms that underlie host-mycobacterial pathogen interactions during infection, including possible complex post-transcriptional regulation of host gene expression involving antisense RNA

    Reconstruction of optical vector-fields with applications in endoscopic imaging

    Get PDF
    We introduce a framework for the reconstruction of the amplitude, phase and polarisation of an optical vector-field using measurements acquired by an imaging device characterised by an integral transform with an unknown spatially-variant kernel. By incorporating effective regularisation terms, this new approach is able to recover an optical vector-field with respect to an arbitrary representation system, which may be different from the one used for device calibration. In particular, it enables the recovery of an optical vector-field with respect to a Fourier basis, which is shown to yield indicative features of increased scattering associated with tissue abnormalities. We demonstrate the effectiveness of our approach using synthetic holographic images as well as biological tissue samples in an experimental setting where measurements of an optical vector-field are acquired by a multicore fibre (MCF) endoscope, and observe that indeed the recovered Fourier coefficients are useful in distinguishing healthy tissues from tumours in early stages of oesophageal cancer.M. Gataric and S. E. Bohndiek were supported by an EPSRC grant EP/N014588/1 for the centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging. G. S. D. Gordon and S. E. Bohndiek received funding from CRUK (C47594/A16267, C14303/A17197, C47594/A21102) and a pump-priming award from the Cancer Research UK Cambridge Centre Early Detection Programme (A20976). The work of F. Renna was funded in part by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 655282 and in part by the FCT grant SFRH/BPD/118714/2016

    Full-field quantitative phase and polarisation-resolved imaging through an optical fibre bundle.

    Get PDF
    Flexible optical fibres, used in conventional medical endoscopy and industrial inspection, scramble phase and polarisation information, restricting users to amplitude-only imaging. Here, we exploit the near-diagonality of the multi-core fibre (MCF) transmission matrix in a parallelised fibre characterisation architecture, enabling accurate imaging of quantitative phase (error <0.3 rad) and polarisation-resolved (errors <10%) properties. We first demonstrate accurate recovery of optical amplitude and phase in two polarisations through the MCF by measuring and inverting the transmission matrix, and then present a robust Bayesian inference approach to resolving 5 polarimetric properties of samples. Our method produces high-resolution (9.0±2.6μm amplitude, phase; 36.0±10.4μm polarimetric) full-field images at working distances up to 1mm over a field-of-view up to 750×750μm 2 using an MCF with potential for flexible operation. We demonstrate the potential of using quantitative phase for computational image focusing and polarisation-resolved properties in imaging birefringence
    • …
    corecore